Publicidad
Publicidad

"El gran reto en medicina personalizada de precisión es conseguir que sea una realidad en todo tipo de enfermedades"

A ello contribuye Dreamgenics, a que la Medicina Personalizada de Precisión sea una realidad en muchas enfermedades a través del análisis de esos datos que, “resulta ser un proceso muy complejo para el que se necesita contar con herramientas bioinformáticas muy avanzadas y personal altamente especializado”.

Los análisis de datos, la inteligencia artificial y el machine learning están entrando de lleno en la medicina para ofrecer ventajas en precisión y avance de tratamiento de enfermedades. En Dreamgenics lo saben muy bien al poner al alcance de clínicos e investigadores soluciones genómicas, proteómicas y bioinformáticas que ayuden ...

Los análisis de datos, la inteligencia artificial y el machine learning están entrando de lleno en la medicina para ofrecer ventajas en precisión y avance de tratamiento de enfermedades. En Dreamgenics lo saben muy bien al poner al alcance de clínicos e investigadores soluciones genómicas, proteómicas y bioinformáticas que ayuden a descifrar las bases moleculares de las enfermedades.

Carlos Martínez, director ejecutivo de Dreamgenics, comenta que los beneficios de los análisis de datos actualmente son destacados, si bien se debe distinguir dos partes dentro del ecosistema sanitario, la investigación y la clínica. "En investigación, la utilización de tecnologías de alto rendimiento está ampliamente implementada y lleva años realizándose, no sólo a nivel genómico, sino también en otras tecnologías -ómicas, como la epigenómica, la proteómica y la metabolómica".

Para el responsable, todas ellas aportan información complementaria y muy valiosa para entender mejor las bases moleculares de las enfermedades. "Si hablamos de la práctica clínica, su aplicación es más limitada, si bien actualmente se utiliza de manera rutinaria la medicina genómica para el diagnóstico de muchas enfermedades de base genética".

Por ello los retos, hoy en día, todavía son muchos. "Deriva de la complejidad de los propios datos generados y de que seamos capaces de utilizarlos adecuadamente. No cabe ninguna duda de que la opción ideal es estudiar una determinada patología de la manera más completa posible".

El experto responde que, si la estudiamos utilizando todas las tecnologías -ómicas a nuestra disposición (genómica, epigenómica, proteómica y metabolómica) podríamos tener una visión a varios niveles de los procesos biológicos que están teniendo lugar. "El problema es que cada una de estas tecnologías de alto rendimiento de manera individual ya genera una gran cantidad de datos cuyo procesamiento resulta muy complejo, por lo que procesar de manera conjunta los datos generados por todas ellas, y posteriormente ser capaces de integrarlos hasta darle un sentido global a la información que estamos obteniendo, es el principal reto que tenemos por delante".

Para leer el artículo completo haz clic en el PDF adjunto

Descargar PDF
Publicidad
Publicidad
Nuestros Podcasts
Este sitio web utiliza Cookies propias y de terceros, para recopilar información con la finalidad de mejorar nuestros servicios, para mostrarle publicidad relacionada con sus preferencias, así como analizar sus hábitos de navegación. Si continua navegando, supone la aceptación de la instalación de las mismas. El usuario tiene la posibilidad de configurar su navegador pudiendo, si así lo desea, impedir que sean instaladas en su disco duro, aunque deberá tener en cuenta que dicha acción podrá ocasionar dificultades de navegación de la página web.